On Hamiltonian elliptic systems with periodic or non-periodic potentials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

Existence of Multiple Periodic Solutions for Second-order Discrete Hamiltonian Systems with Partially Periodic Potentials

In this article, we use critical point theory to obtain multiple periodic solutions for second-order discrete Hamiltonian systems, when the nonlinearity is partially periodic and its gradient is linearly and sublinearly bounded.

متن کامل

Periodic Orbits of Hamiltonian Systems

5 The Variational principles and periodic orbits 21 5.1 Lagrangian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Hamiltonian view point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3 Fixed energy problem, the Hill’s region . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.4 Continuation of periodic orbits as critical p...

متن کامل

Periodic solutions for non-autonomous Hamiltonian systems possessing super-quadratic potentials

We consider the non-autonomous Hamiltonian system Ju̇+∇H (t; u) = 0; (t; u)∈ ST × R ; where H ∈C1(R×R2N ;R) is T -periodic in t-variable, and J= ( 0 −IN IN 0 ) denotes the standard symplectic matrix and ∇ denotes the gradient with respect to the u-variable. We are interested in the existence of T -periodic solutions of (1). For the autonomous case, i.e. H is independent of t, in his pioneer work...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2010

ISSN: 0022-0396

DOI: 10.1016/j.jde.2010.09.014